题目:A cell-centered finite volume method on locally refined composite Cartesian grids and its application in wetting problems
时间:2020年12月10号上午10:00-12:00
地点:腾讯会议(ID:897 411 363)
摘要: In this talk, I will present a cell-centered finite volume method on locally uniformly refined composite Cartesian grids. Unlike similar method on composite Cartesian grids (such as those proposed by McCormick Thomas 1986, Bramble-Ewing-Pasciak-Schatz 1988, Johansen-Colella 1998, Papac-HelgadottirRatsch-Gibou 2013 and Kriva-Handlovicova 2016), the method is derived in a very simple way based on finite Volume conservation of mass and flux. The finite volume stencils on composite grids are compact in both two and three space dimensions. I will also describe an efficient multilevel/multigrid (composite grid) iteration technique for the Poisson equation with the cell-centered finite method as well as its application in a three-dimensional wetting problem for moving contact lines. This is joint work with Xianmin Xu (CAS) and Zhongshu Zhao (SJTU).
报告人简介:应文俊, 上海交通大学数学科学学院及自然科学研究院教授。美国杜克大学计算数学博士, 生物医学工程系博士后,曾任美国密歇根理工大学助理教授。应文俊教授的研究主要包括求解非线性双曲守恒律方程和奇异扰动反应扩散方程的时间空间自适应网格加密算法,求解刚性系统的大步长稳定时间积分方法,求解椭圆型偏微分方程的边界积分方法,以及一类基于位势理论的求解复杂区域上椭圆型,抛物型偏微分方程的笛卡尔直角网格法。研究涉及的领域包括计算空气动力学,计算生物物理学,计算电生理学和计算流体力学等。应文俊教授目前是杂志Applied Numerical Mathematics的编委。